Challenges and opportunities related to the use electronic data capture for cancer clinical trials

> Denis Lacombe, MD, MSc EORTC, Director General Brussels, Belgium

The future of cancer therapy

Contents

- Short introduction to EORTC
- EORTC e-landscape
- E-consent
- E-data management
- Specific e-QA programs
- E-monitoring
- Some future perspectives
- Conclusions

The future of cancer therapy

Accrual of screened patients in EORTC clinical studies from 2000 to 2016: 89095 patients

European Union: 79479 France: 17779 Netherlands: 17350 Belgium: 9472 United Kingdom: 8604 Germany: 8174 Italy: 7479 Spain: 3823 Poland: 1296 Sweden: 977 Austria: 960 Portugal: 725 Denmark: 642 Slovakia: 480 Slovenia: 414 Hungary: 364 Ireland: 286 Czech Republic: 209 Cyprus: 101 Greece: 96 Finland: 64 Bulgaria: 51 Estonia: 39 Latvia: 34 Malta: 20 Romania: 20 Lithuania: 11 Luxembourg: 9

Norway: 489 Serbia: 283 Russian Federation: 221 Bosnia And Herzegovina: 8 Macedonia: 6 Rest of the world: 5967

> tere of cancer therapy The future of cancel therapy

Non-European Union: 3649

Switzerland: 2011

Turkey: 631

EORTC by the numbers (2016)

A world-class network	An expert HQ	Unique output
 ± 5,000 collaborators 870 institutions 	 202 employees > 195,000 patients 	• 12 new studies open to patient entry in 2016
• 35 countries	in database	• 54 ongoing studies
 21 groups & task- forces 	 24,000 patients in follow-up 	 19 studies in protocol outline development
 111 collaborative groups 		 15 studies in protocol development
8.0003		 15 studies in regulatory activation
		 Working on ≈ 193 studies

The future of cancer therapy

EORTC

The future of cancer therapy

EORTC infrastructure to support new generation clinical trials

The future of cancer therapy

Consent

The future of cancer therapy

Suggested reading: the changing face of clinical trials N. Engl. J. Med 376;9 March 2, 2017

- The changing face of informed consent
- Electronic informed consent and internet based trials
- Mobile health research: App-based trials and informed consent
- Video Informed Consent

The future of cancer therapy

Consent practices today

The future of cancer therapy

Concerns

- 20/30 pages
 - Information overload
 - Scientific/legal language
 - Comprehensibility?
- Difficulty to go back to patients
 - Complicates sharing of research results
 - Limits re-use of patient data and samples
 - Safety updates during trials
- "Take it or leave it" approach: difficult to incorportate individual's preferences
 - Patients' control over data and samples is limited

The future of cancer therapy

E-consent

- Use of multimedia increasing patients' level of understanding
 - Indirect impact on enrollment rates and fewer drop outs
- Interactivity and more fine-grained consents
- Possibility for off-site recruitment
- Legal compliance, auditability
- Decrease workload
- Efficiency gains can reduce clinical trial costs
- However, adoption is slow
 - High start-up costs, privacy concerns, unfamiliar sponsors IRBs and RECs, time...

Data Collection

The future of cancer therapy

Data collection through EDC system

The future of cancer therapy

Data providers

- Patient data by site
- Central laboratory involved
- Patient reported outcome (PRO)

 \rightarrow

The future of cancer therapy

EDC advantages (I)

- Dynamic, more intelligent data collection
- Keep users engaged at all levels of the clinical research process
 Bridge the gap between site staff, monitors, data managers and sponsors
- On-line user guides with general guidance on the EDC system itself. Useful to remind centers for e.g. protocol criteria. Guidelines are visible/shown at time of relevance
- Improved data quality by automated edit checks during data entry. Edit checks programmed into the software can make sure data meets certain required formats, ranges, etc. before the data is accepted into the trial database

The future of cancer therapy

EDC advantages (II)

- Setting up the database creates the eCRF at the same time
- Time saved collecting data -> no more (double) data entry by sponsor and makes data available in real time. This insight enables faster decision making, and can support adaptive trial designs
- If CRFs needs new version, just publish it, no more printing and distribution
- Uses less space and has a higher security

The future of cancer therapy

EDC advantages (III)

- More Efficient Processes through dynamic triggering of CRFs EDC software can help guide the site through the series of study events
- requesting only the data needed for the particular patient's circumstance at a particular time. It faculties the process of clarifying data discrepancies with tools for identifying and resolving data issues with sites, and can help reduce the number of in-person site visits required during a trial
- Possible integration of the EDC system with other software

The future of cancer therapy

Radiotherapy Quality Assurance Program

The future of cancer therapy

EORTC RTQA platform (data integrity QA)

Integrated submission

- Data consistency
- Formatting
- Completeness
- anonymisation

The future of cancer therapy

EORTC RTQA platform (data review-VODCA)

EORTC RTQA platform

EORTC RTQA platform (data collection)

Digital data transfer

Advantages:

- More efficient
- No local installation required
- Large data transfer
- Proper security
- Trial independent

Study and patient identification					
Study	22071				
Patient seq id	DR				
Patient birthdate (DDMMYYYY)	01 🕶 01 🕶 1900 🕶				
Institution number	1				
Submission type	Dummy Run 💌				
Upload Result Notification					
Email address	akos.gulyban@eortc.be				
File					
Browse Remove Clear					
V Uploads					
DummyRun-uploadtest.zip 16.0%					
Uploading: DummyRun-uploadtest.zip (1/1).					
Progress: 16.0%					
Current speed: 7909 KB/sec (Time left: 0 min 1 sec) 18.0%					
2010/10					
Upload					

Web based uploader:

- Java (platform independent)
- Automatic email notification

The future of cancer therapy

EORTC RTQA programme (I)

Achievements:

- > 40 manuscripts led by RTQA since 1982
- Real time individual case review for 4 ongoing trials, with turnaround time of 2-3 calendar days
- >300 institutions/hospitals at EORTC facility questionnaire database
- >400 Beam Output Audit-report received since 2005 (from >200 centers, >700 treatment machines, and 33 countries)
- >80 sites with Complex Dosimetry Checks credentialing
- Virtual phantom procedures are also used for IMRT and other novel techniques

The future of cancer therapy

EORTC RTQA programme (II)

Procedures:

The future of cancer therapy

Imaging QA

The future of cancer therapy

EORTC

The future of cancer therapy

EORTC

The future of cancer therapy

Risk management for imaging biomarker-driven studies

Imaging risk assessment

Lancet Oncol 2015; 16: e622-28

European Organisation for Research and Treatment of Cancer Headquarters, Brussels,

Relgium (Y Liu MD, S Collette MSci); Cancer Research UK Cancer Imaging Centre, MRI Unit, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK (Prof N M deSouza MD); Clinical

Trial Branch. Cancer Imaging

clinical trials in oncology Yan Liu, Nandita M deSouza, Lalitha K Shankar, Hans-Ulrich Kauczor, Siegfried Trattnig, Sandra Collette, Arturo Chiti Imaging has steadily evolved in clinical cancer research as a result of improved conventional imaging methods and the innovation of new functional and molecular imaging techniques. Despite this evolution, the design and data quality derived from imaging within clinical trials are not ideal and gaps exist with paucity of optimised methods, constraints of trial operational support, and scarce resources. Difficulties associated with integrating imaging biomarkers into trials have been neglected compared with inclusion of tissue and blood biomarkers, largely because of inherent challenges in the complexity of imaging technologies, safety issues related to new imaging contrast media, standardisation of image acquisition across multivendor platforms, and various postprocessing options available with advanced software. Ignorance of these pitfalls directly affects the quality of the imaging read-out, leading to trial failure, particularly when imaging is a primary endpoint. Therefore, we propose a practical risk-based framework and recommendations for trials driven by imaging biomarkers, which allow identification of risks at trial initiation to better allocate resources and prioritise key tasks.

A risk management approach for imaging biomarker-driven

EORTC

The future of cancer therapy

Lessons learnt (I)

Example

<u>Hypothesis:</u> patients with FDG-PET response (Δ SUVmax \geq 25%), the PFS is 12 weeks longer than in patients without PET response

Finally, less than half of pts could be used for quantitative assessment. No conclusion could be drawn due to inadequate sample size

- 44 patients enrolled (81 scans received)
- 35 patients have both scans with good visual quality
- Low compliance to the imaging guidelines

	required	%compliance
BL	60 ±5 min	39% (15/35)
FU	60 ±5 min	51% (18/35)
BL+FU	60 ±5 min	31% (11/35)
FU±10 min from actual BL		66% (23/35)

Hristova at al, EJNMMI 2015 *The future of cancer therapy*

Lessons learnt (II)

What is the truth?

Involuntary patient motion, swallowing

٠

The future of cancer therapy

Collection of HBM

The future of cancer therapy

The origin of HBM

<u>3 types of HBM</u>

- Additional HBM: collected expressly for research within the clinical trial
 - e.g. blood samples for correlative TR
- HBM pre-existing to the trial *without* diagnostic value
 - e.g. banked frozen tissue from an institutional biobank
- HBM pre-existing to the trial <u>with</u> diagnostic value
 - e.g. diagnostic FFPE block

The future of cancer therapy

HBM custodianship

Custodian: legal entity responsible for safeguarding HBM and oversight of its use

Institutes can remain custodian *even if* HBM is offsite in an EORTC storage facility (the contributing institute still decides future use)

The future of cancer therapy

Logistics for HBM collection

HBM traceability

- EORTC web-based tracking tool https://samples.eortc.be/
- Restricted access
- 24h/24h, 7d/7d

Samples		
Enter username and password and click login.		
Username		
Password		
Login		
Forgot your password?		
Request a username and password		
Change your password		

HBM handling procedures/guidelines

<u>GUIDELINES</u> FOR HUMAN BIOLOGICAL MATERIAL (HBM) MANAGEMENT <u>STUDY NUMBER</u> STUDY TITLE

- optimize quality of samples
- must be developed prospectively
- based on international standards

The future of cancer therapy

E- research QA and Monitoring

C. de Balincourt

The future of cancer therapy

Types of "monitoring" in clinical trials

EORTC

The future of cancer therapy

QUALIT

Central monitoring

Accrual assessment

- CRFs tracking & cleaning
- Medical & Safety review

On-site monitoring

- Patient's protection (PISIC)
- Protocol & GCP compliance (source documents)
- Data reliability (SDV, CRF versus source documents)

The future of cancer therapy

EORTC

The future of cancer therapy

E-research at EORTC: impact of "remote monitoring": a few examples

Research activity	Conventionally	Now	Advantage
Sites feasibility	Pre-study visit	Questionnaire on – line to check site' capacities	Cost-effectiveness Time-saving
Sites training	On-site initiation visit by a CRA	E-training: Web- based training material - WebEx	Cost-effectiveness Time -saving
Investigator Study File	Paper binders prepared and sent to sites	Web-based study essential documents (restricted access)	Availability for site at any time Up-to-date Maintenance by sponsor

The future of cancer therapy

Can EMR push our standards a step further?

The future of cancer therapy

Conclusion

- Patient centered clinical research can benefit from e-solutions
- PRO and other activities directly involving patients can be made easier
- Efficient and timely QA programs at all levels are made easier
- Opening to new possibilities:
 - Real life studies
 - Long term outcome and survivorship
- Lack of data regarding effectiveness and cost efficiency

The future of cancer therapy